ITRF2020 and the IDS Contribution

Zuheir Altamimi, Paul Rebischung, Xavier Collilieux, Laurent Métivier, Kristel Chanard IGN-IPGP, France

Key Points:

- ITRF2020 and its innovations: modelling of nonlinear station motions
- IDS Contribution
 - Quality (WRMS)
 - TRF parameters (origin & scale)

IGN

Usage of ITRF2020 kinematic model

ITRF2020 Input Data

ТС	# of solutions	Time-span	# of sites	Theoretical Frame Origin
IDS/DORIS	1456 weekly	1993.0 – 2021.0 (28 yrs)	87	СМ
IGS/GNSS/GPS	9861 daily	1994.0 – 2021.0 (27 yrs)	1159	CN
ILRS/SLR	243 fortnightly1460 weekly	1983.0 - 1993.0 1993.0 - 2021.0 (38 yrs)	100	СМ
IVS/VLBI	6178 session-wise	1980.0 – 2021.0 (<mark>41 yrs</mark>)	117	CN

INSTITUT NATIONAL DE L'INFORMATION GÉOGRAPHIQUE ET FORESTIÈRE

ITRF2020 Network

➤ 1223 sites

> 878 Northern hemisphere

- ➤ 355 Southern hemisphere
- ➤ 1800 stations
- **> 3106 discontinuities**
- ➤ ~1159 GNSS sites
 - ➤ 1344 stations

2938 discontinuities

ITRF2020: Modelling nonlinear station motions

ITRF2020 New Analysis Strategy

Input data:

- Space geodesy time series
 - DORIS/IDS weekly
 - GNSS/IGS daily
 - SLR/ILRS weekly
 - VLBI/IVS: Session-wise
- Local ties: 253 vectors
- Co-motion constraints at colocation sites:
 - Station velocities & seasonal signals

Data analysis:

- Time series analysis & stacking of individual techniques
- Assign discontinuities
- Determine PSD Parametric Models
 using GNSS data
- Estimate and remove the first 8 GPS draconitic harmonics
- Accumulate the full 4 technique time series all together, adding local ties and co-motion constraints

Output:

- Station positions & velocities
- **EOPs**
- PSD models
- Seasonal Signals (annual & semiannual) expressed in the CM of SLR

ITRF2020 Specifications: Origin: SLR Scale: Average of SLR & VLBI Orientation: Alignment to ITRF2014

IPGP

IDS 2014 WRMS

IGN

IDS 2020 WRMS

IDS 2020 intrinsic origin & scale

ITRF2020 Origin: Inherited from SLR long-term CM origin

GNSS frame origin is not reliable

ET FORESTIÈRE

ITRF2020: Augmented Parametric Reference Frame

Station seasonal signals, geocenter motion and the reference frame definition

$$X(t) = X(t_0) + \dot{X}_{.}(t - t_0) + \delta X_{PSD}(t) + \frac{\delta X_f(t)}{\delta X_f(t)}$$

$$\delta X_f(t) = \sum_{i=1}^2 \begin{pmatrix} a_x^i \\ a_y^i \\ a_z^i \end{pmatrix} \cos(2i\pi \cdot t) + \begin{pmatrix} b_x^i \\ b_y^i \\ b_z^i \end{pmatrix} \sin(2i\pi \cdot t)$$

• δX_f : *a* & *b* are estimated in SLR CM-frame

 $X_{CM}(t) = X_{CF}(t) + \Delta X_G(t)$ (Geocenter motion)

CM : Center of Mass Frame CF : Center of Figure Frame

(Blewitt, 2003)

Usage of ITRF2020 Seasonal Signals

The ITRF2020 kinematic model:

 $X(t) = X(t_0) + \dot{X}_{.}(t - t_0) + \delta X_{PSD}(t) + \delta X_{f}(t)$

Precise Orbit Determination : Use CM-based seasonal signals

<u>Alignment of global solutions</u>: Use either CM or CF seasonal signals

- => (1) Avoid aliasing the seasonal signals into the Helmert parameters &
 (2) Seasonal signals will accurately be retained in the aligned solutions
 - 1. If CM: translational motion common to all stations (i.e., seasonal geocenter motion) will be transferred to the aligned solutions
 - 2. If CF: the aligned solutions will be free from seasonal geocenter motion

<u>Alignment of local or regional solutions</u>: No seasonal signals to be used in order to avoid seasonal common mode in the aligned solutions

CNrs

Conclusion ITRF2020

- A step further in improving the ITRF determination
- Adequately modelling nonlinear station motions : PSD & Seasonal Signals
- For the first time in the ITRF history, the scale agreement between SLR & VLBI is at the level of 0.15 ppb (1 mm at the equator)
- Some nonlinearities in the scale time series still exist for SLR, VLBI and DORIS
- IDS Contribution:
 - Improved quality, especially the more recent weeks
 - Non-linearity of IDS origin and scale needs to be investigated

Thank you

