

DORIS/DIODE the last improvements

CHAUVEAU Jean-Pierre (CLS)

Agenda

- A new DORIS/DIODE issue on board Jason-3, Sentinel-3A and 3B O And available for Sentinel-6MF and SWOT
- A new DORIS product for SWOT
- And next?

DORIS/DIODE v5.05 models, main evolutions

• Earth gravity field: updated

- \odot Previous version: Eigen 6S extrapolated to 01/01/2013
- Updated to Eigen GRGS RL03 Static mean field (up to degree and order 78) extrapolated to 01/01/2021

IDS workshop

• Satellite modelization: improved

 From box and wings to N-faces
 Improved modelization for Solar Radiation Pressure (direct, albedo, infrared) and Drag accelerations

- Extrafine regime optimized
 - \odot Execution time reduced
 - \odot On board and on ground USO frequency drift estimation
 - \circ Pole drift estimation
 - Tightened parametrization

DORIS/DIODE v5.05 models, main evolutions

- Ocean tides: new model
 - \circ FES 2014 model
 - \circ 10 tides: K1 (∞), P1 (182.62d), Mm (27.55d),
 - Mf (13.66d), O1 (13.66d), Q1 (9.13d),
 - N2 (0.527d), M2 (0.517d), S2 (0.5d), K2 (0.498d)
 - \odot Up to degree and order 5
- Solid and ocean pole tides: new model O IERS conventions 2010
- Beacons position correction due to solid Earth and pole tides: improved
- Software adaptation to comply with ECSS standards

DORIS/DIODE v5.05 on board Jason-3

• DIODE-POE orbit differences

 \circ Previously on Jason-3: v4.00

Ground retreatment based on the same data as on board (25 days, w/o manoeuver)
 POE: Precise CNES POD Team orbit

Radial rms

3D rms

IDS workshop

DORIS/DIODE v5.05 on board Jason-3

• Statistics of DIODE-POE orbit differences over a 25 days period (one point every 60s)

	NB POINTS *******	RMS(m) v4.00	RMS(m) v5.05	<pre>% improvement</pre>
Radial	36042	0.030374	0.020689	31.8
Along-track	36042	0.076037	0.062102	18.3
Cross-track	36042	0.102089	0.062397	38.8
3D Distance	36042	0.130868	0.090432	30.9
Radial velocity	36042	0.000065	0.000051	16.4
Along-track velocity	36042	0.000028	0.000019	32.1
Cross-track velocity	36042	0.000094	0.000057	39.3
3D velocity	36042	0.000117	0.000079	32.4

Degradation due to Kauai beacon

DORIS/DIODE v5.05 in flight results

• Comparison DIODE-MOE • On board Jason-3 on 18/04/2022

 \odot On board Sentinel-3A on 13/05/2022

 \circ On board Sentinel-3B on 24/05/2022

MOE: CNES Mean Orbit Ephemeris

IDS workshop

DORIS/DIODE v5.05 frequency restitution

- Ny-Alesund beacon connected to the VLBI maser in August 2022
- Multi-satellites mixed frequency restitution $\left(\frac{\delta f}{f}\right)$

o Ground retreatement (Saral, Cryosat-2, Jason-3, Sentinal-3A, Sentinel-3B)

Rms
$$\approx$$
 7 10^{e-13} ($\frac{\delta f}{f}$)

• On board and beacons frequency biases and drifts available in TM v5.05

KaRin Bulletin for SWOT

- KaRin: Ka-band Radar interferometer
- DIODE will deliver to KaRin a new product

 Goal: the altimeter will use it to predict its position relative to the reference ellipsoid WGS84, during a time window of 20 seconds in the future

- o Requirements:
 - Altitude propagation coefficients with error less than 1m on the predicted altitude in the time window
 - Discontinuities between successive height updates of less than 1mm
 - Latitude and longitude predictions 20s later with absolute accuracy of 10⁻⁰⁴ degree, equivalent to 10m in ITRF cartesian position

 \circ Reminder: 20s later the satellite is already 140km away!

KaRin Bulletin for SWOT

 Solution: fourth order polynomial with assured continuity from one polynomial to another

Altitude estimation $(t - t_0) = a + b(t - t_0) + c \frac{(t - t_0)^2}{2} + d \frac{(t - t_0)^3}{6} + e \frac{(t - t_0)^4}{24}$

Error = DIODE altitude error (\approx 3cm) + prediction error (< 0.15m) < 1m required

Prediction error = difference between current altitude and altitude predicted 20s earlier

IDS workshop

Perspectives

- DORIS Neo receiver (under development)
 - \circ Faster processor
 - DGXX generation = 12MHz
 - DGXX-S generation = 36MHz
 - Neo = at least 100MHz
 - ➢New and more complex force models for DIODE
 - Better positioning
 - $\odot\,\text{SDR}$ technology for signal tracking
 - ➢ Better control of signal tracking by DIODE
 - > Better attenuation of interference due to the number of beacons in visibility
 - ≻Allow to fly at higher altitude

Conclusions

- The new DORIS/DIODE 5.05 is performing very well

 Improvement of ~30% for Jason-3 w.r.t previous version 4.00
 Improvement of ~20-25% for Sentinel-3A and 3B w.r.t previous version 5.02
 Available for Sentinel-6MF in December 2022
 Available for SWOT during Satellite in Orbit Validation
 On board and beacons frequency biases and drifts available in TM
- KaRin bulletin tested soon on board SWOT
- DIODE towards the centimeter in orbit with next DORIS generation