

A 30-year record of the time-variable gravity field from DORIS and SLR using a tailored parametrization via GRACE EOFs

Anno Löcher, Jürgen Kusche University of Bonn

IDS Workshop 2022, Venice

Introduction

- Time-variable gravity field precisely known since 2002 from GRACE and GRACE Follow-On
- Goal: Extend the GRACE time series backward (and close the gap between GRACE and GRACE Follow-On)

Introduction

- Time-variable gravity field (TVG) precisely observed since 2002 by GRACE and GRACE Follow-On
- Goal: Extend the GRACE time series backward (and close the gap between GRACE and GRACE Follow-On)
- Solutions from non-dedicated techniques restricted to the lowest SH degrees
- Idea: Use base functions tailored to the expected signal

Tailoring the base functions

- Principal component analysis (PCA) decomposes the GRACE time series into temporal and spatial modes ordered by their significance
- PCA performed by singular value decomposition

 GRACE PCA usually applied to gridded data, EOFs returned as gridded values

Tailoring the base functions

- Principal component analysis (PCA) decomposes the GRACE time series into temporal and spatial modes ordered by their significance
- PCA performed by singular value decomposition

- GRACE PCA usually applied to gridded data, EOFs returned as gridded values
- More appropriate here: submit SH coefficients, get back EOFs also in SH domain

Recovering TVG with EOFs

- EOFs in terms of SHs directly usable as base functions in force modelling. "PCs" solved-for
- Large-scale mass variations well represented by a few EOFs
 - \rightarrow massive reduction of parameter space
 - \rightarrow stable solutions from non-dedicated missions
- Limitations:
 - Early truncation of EOF series might leave detected signal unmodelled
 - GRACE EOFs probably not perfect for other periods
- Concept proved with SLR, now applied to DORIS

Löcher and Kusche, IDS Workshop 2022 • 6

DORIS processing at IGG

 In-house software, DORIS capabilities developed from SLR → Observation equations consistently set up for (biased) ranges

DORIS 1.0/2.1/2.2	Unchained observations: Range-rates each split into two biased ranges (0 m and range rate x 7 sec)	
	Chained observations : Range- rates integrated to biased ranges as long as possible	
DORIS RINEX	Phase observations	

DORIS processing at IGG

- In-house software, DORIS capabilities developed from SLR → Observation equations consistently set up for (biased) ranges
- 10 satellites (altitude < 1000 km) processed in daily arcs
- Orientation and macromodels from IDS document
- Stations and Earth orientation fixed (DPOD2014, IERS C04)
- Force models and force parameters comparable to CNES

Initial values	1 set per arc
Range bias (integration constant)	1 per range sequence
Range drift (for station frequency offset)	1 per pass
Troposphere zenith bias	1 per pass
Troposphere gradient	1 per pass (only Spot 5 and Envisat)
Troposphere gradient Once-per-rev along- track	1 per pass (only Spot 5 and Envisat) 1 per arc
Troposphere gradient Once-per-rev along- track Scale factor solar radiation	1 per pass (only Spot 5 and Envisat) 1 per arc 1 per arc

	Mean RMS per arc [cm]		
	along	cross	radial
Spot 2	4.7	4.4	1.6
Spot 3	4.0	4.1	1.2
Spot 4	4.4	4.0	1.5
Spot 5	2.9	3.4	1.0
Envisat	3.2	3.8	0.9
Cryosat	3.7	4.4	1.2
Saral	4.4	4.8	1.2
HY-2A	4.4	4.9	1.1
Sentinel 3A	3.2	3.9	0.9
Sentinel 3B	3.4	4.1	1.0

HY-2A

0.1

DORIS processing: difference to CNES orbits

Löcher and Kusche, IDS Workshop 2022 • 9

RMS per arc [m] ►

• IGG orbits

• CNES orbits

HY-2A

Löcher and Kusche, IDS Workshop 2022 ♦ 10

- EOFs from ITSG2018 and ITSG-operational (GRACE-FO)
- Monthly solutions from daily normal equations combined with VCE
- For DORIS/SLR solution, daily NEQs from DORIS combined with monthly NEQs from SLR

Single-satellite solutions (8 EOFs)

- EOFs from ITSG2018 and ITSG-operational (GRACE-FO)
- Monthly solutions from daily normal equations combined with VCE
- For DORIS/SLR solution, daily NEQs from DORIS combined with monthly NEQs from SLR

- EOFs from ITSG2018 and ITSG-operational (GRACE-FO)
- Monthly solutions from daily normal equations combined with VCE
- For DORIS/SLR solution, daily NEQs from DORIS combined with monthly NEQs from SLR

- EOFs from ITSG2018 and ITSG-operational (GRACE-FO)
- Monthly solutions from daily normal equations combined with VCE
- For DORIS/SLR solution, daily NEQs from DORIS combined with monthly NEQs from SLR

River basins

(Mean 12-18-24 EOFs, annual signal removed)

Löcher and Kusche, IDS Workshop 2022 ♦ 14

Application as force model in POD

- Monthly solutions from SLR and DORIS should be accurate enough to be used as force models in POD at higher altitudes (Topex, Jason, ...)
- Test: Dynamical reconstruction of Jason 3 orbits from GNSS
 - Observations: Kinematical orbits from TU Graz
 - Parametrization as above (without biases). Orientation from quaternions
 - Three solutions: static field, Eigen-GRGS-RL04, SLR+DORIS
 - Orbit accuracy assessed by SLR residuals

Summary

- EOF representation for TVG recovery well suited for DORIS
- Reasonable results for large-scale mass variations even from single satellites including early Spot missions
- SLR solution substantially improved by combination with DORIS
- SLR/DORIS solution equivalent to Eigen-GRGS-RL04 as force model at higher altitudes. Slight advantage when Eigen model provides only extrapolated values