Copernicus POD Service DORIS processing with FOCUSPOD

Presenter: Carlos Fernández (GMV)

C. Fernández (GMV), M. Fernández (GMV), J. Fernández (GMV), H. Peter (PosiTim), P. Féménias (ESA/ESRIN), C. Nogueira-Loddo (EUMETSAT)

30YPRA – IDS meeting, Montpellier, France, 2-7th September 2024

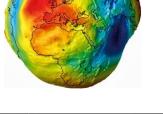
© 2024 GMV Property – All rights reserved

Agenda

- 1. FocusPOD
- 2. DORIS observation modelling
- 3. POD results
- 4. Conclusions & future work

FocusPOD

DORIS processing with FocusPOD

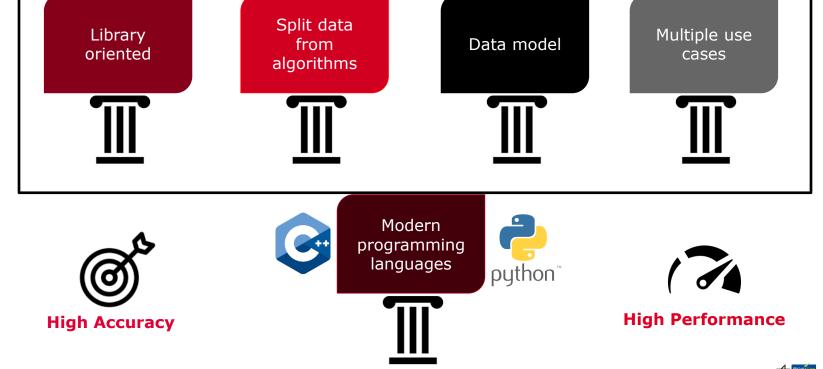

FOCUSPOD

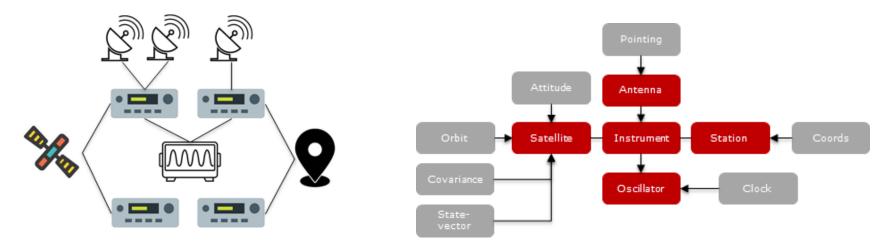
What is it?

Dynamics and Geodesy library, written in C++ and python from scratch, using state-of-theart software development <u>paradigms</u> and astrodynamics <u>algorithms</u>, allowing the development of **advanced applications** in the areas of:

FocusPOD (<u>https://www.gmv.com/en-es/products/space/focuspod</u>), is a GMV Flight

- Precise Orbit Determination (POD) and Geodesy
- Space Surveillance and Tracking (SST) / Space Traffic Management
- Space Flight Dynamics (FD) / Interplanetary
- Mission Analysis and Simulation




FOCUSPOD **Design pillars**

FOCUSPOD Data model

- ... is the library **key pillar**
- ... is a **rational and unique** representation of the physical reality
- ... enforces **separation** of data and algorithm, to facilitate the reuse of data or algorithms
- ... is relational establishing links between elements
- ... is **optimized for large volumes** of data, e.g., GNSS observations, mega-constellations...

FOCUSPOD History

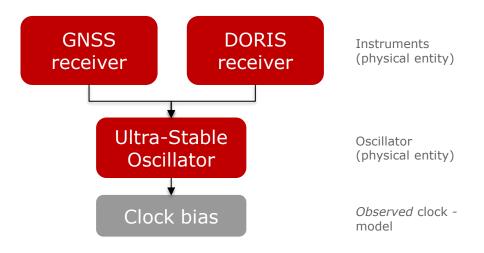
- Written from scratch starting in 2021
- Agile methodology: 2-week sprints, performance testing w.r.t. legacy SW (accuracy / performance)
- **Team size**: between ~3 to 7 developers in 2021-2023; then ~2 (maintenance, R&D...)
- Operational SW by 2023!

Page 7

FOCUSPOD History

- Written from scratch starting in 2021
- Agile methodology: 2-week sprints, performance testing w.r.t. legacy SW (accuracy / performance)
- Team size: between ~3 to 7 developers in 2021-2023; then ~2 (maintenance, R&D...)
- Operational SW by 2023!

Page 8



DORIS observation modelling

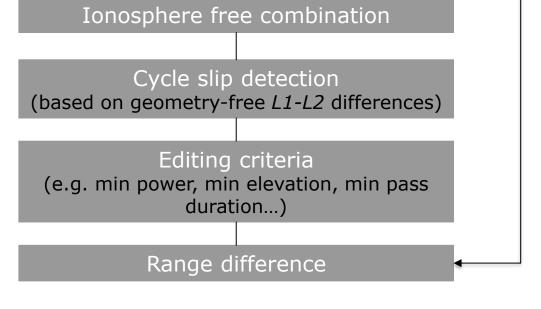
DORIS processing Highlights

- DORIS RINEX (v3) supported
- Existing data model entities reused: satellite, station, coords, instrument, oscillator...
- Carrier phase (L) used to form range differences
- No ad-hoc rcv clock bias treatment \rightarrow values from RINEX

DORIS observation modelling RINEX

3.00 0 D RINEX VEF	CTON / TYPE
3.00 0 D RINEX VEF Expert CNES 20240401 073022 UTC PGM / RUN	RSION / TYPE
G = GPS R = GLONASS E = GALILEO S = GEO M = MIXED D = DORIS COMMENT	N DI / DATE
SENTINEL-3A SATELLITE	
2016-011A COSPAR NU	
	/ AGENCY
	TYPE / VERS
DORIS STAREC ANT # / T	
	DSITION XYZ
1.5000 0.2200 <u>0.0100</u> CENTER OF	
D 10 L1 L2 C1 C2 W1 W2 F P T H SYS / # /	/ OBS TYDES
2024 03 31 00 00 18.8509872 DOR TIME OF F	
	ALE FACTOR
	DATE OFFSET
53 # 0F STAT	
D01 MLAC MANGILAO 823015001 3 0 STATION F	
D02 NOXC NOUMEA 927015005 4 0 STATION F	
D02 NOXC NOUMEA 92701S005 4 0 STATION F D03 MSPB MOUNT STROMLO 50119S004 4 0 STATION F	
D04 YASB YARAGADEE 50107S011 4 0 STATION F	
D05 ADHC TERRE ADELIE 91501S005 3 0 STATION F	
:	:
D51 BETB BETIO 503055001 3 0 STATION F	
D52 TSTC TEST-FERMAT 10003S006 4 -22 STATION F D53 ASEB ASCENSION 30602S005 3 0 STATION F	
	EF STATIONS
D10 2.364 23.148 TIME REF D43 8.112 30.325 TIME REF	
D43 0.305 39.031 TIME REF	
	STATION STAT DATE
2024 03 31 00 00 0.0000000 11ME KEF	
> 2024 03 31 00 00 22.159948900 0 1 -3.308961669 0	EADEN
22024 03 31 00 00 22.139948900 0 1 -3.308901009 0	124 200 7
	-124.300 /
-111.700 7 3722.794 1007.000 0 23.978 1	72.967 1
D01 -2022818.097 -1225034.253 100964582.24211 100904033.58911 -111.700 7 3722.794 1007.000 23.978 1 > 2024 03 31 00 02 25.159948900 1 -3.308961669 0 D01 -2138533.120 -1247833.987 100962878.59111 100962929.76411	-124.300 7 72.967 1

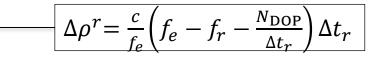
Power received (W) used to exclude high noise observations


Relative frequency offset (F) used for receiver clock handling

Pressure, temperature and humidity used for Tropospheric correction

Frequency shift factor (K) used for station frequency computation f_e

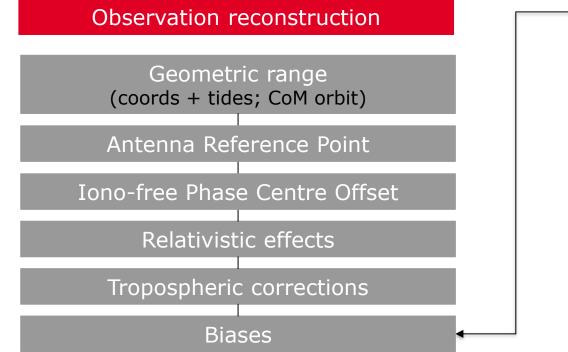
Receiver clock offset applied to observation epoch (DOR) to obtain TAI (epochwise)



DORIS observation modelling Obs pre-processing

Observation pre-processing

 $N_{DOP} = \frac{L_{IF1} - L_{IF2}}{c/S_1}$


- Δρ^r: range difference (*real measurement*) based on 10-sec carrier phase differences
- *c*: velocity of light in the vacuum
- *f_e*: emitter frequency (nominal S1 freq. w/ RINEX frequency shift factor)
- *f_r*: receiver frequency at t₁ (from RINEX F record, epochwise)
- N_{DOP}: doppler count (iono-free carrier phase difference [m] as S1 cycles)
- Δt_r: receiver interval (TAI, receiver clock biases applied from RINEX epoch records)

DORIS observation modelling

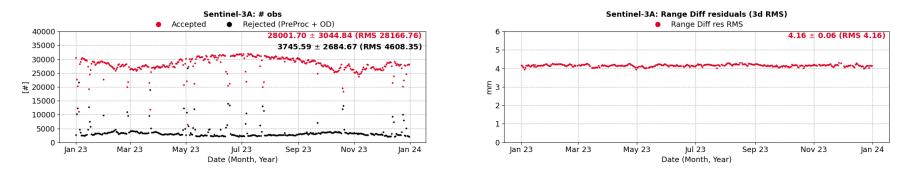
Obs reconstruction

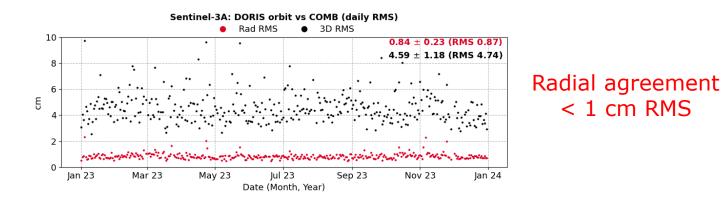
$$\Delta \rho^t = \rho_2 - \rho_1$$

- Δρ^t: range difference (theoretical measurement)
- ρ_1 : range at t_1
- ρ_2 : range at t_2

POD results

POD results SENTINEL-3A parametrization



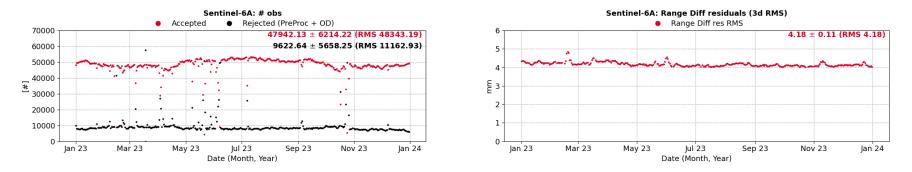

Determination arc	72h, of which only central 24h are compared
Measurements	DORIS only (RINEX v3); $\sigma_{range_diff} = 6 \text{ mm}$
Orbit propagation	COST-G (time-varying terms) + AOD1B + ocean/solid tides Third-body (JPL DE421) SPR + IR + albedo + drag (NRLMSISE-00; based on CPOD macro-model)
Meas. reconstruction	Geometric delay + (iono-free) ARP + relativity + tides Tropo: Saastamoinen with estimated parameters (ZTD, TMF)
Attitude	Real quaternions
Stations	dpod2020_023.snx (modified for iono-free Z comp) ITRF2020-doris.psd
Parameters	Dynamic: 30 CDs, 1 CR, manoeuvre errors, 12 CPRs (along/cross sin/cos) Observation: 1 bias per station per pass, 1 ZTD+TMF per station per pass
Edit criteria	10º min elev 120 s min pass length

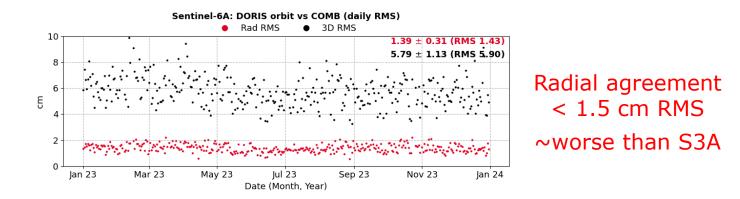
POD results SENTINEL-3A results

© 2024 GMV Property – All rights reserved

DORIS processing with FocusPOD

POD results SENTINEL-6A parametrization




Determination arc	72h, of which only central 24h are compared
Measurements	DORIS only (RINEX v3); $\sigma_{range_diff} = 8 \text{ mm}$
Orbit propagation	COST-G (time-varying terms) + AOD1B + ocean/solid tides Third-body (JPL DE421) SPR + IR + albedo + drag (NRLMSISE-00; based on CPOD macro-model)
Meas. reconstruction	Geometric delay + (iono-free) ARP + relativity + tides Tropo: Saastamoinen with estimated parameters (ZTD, TMF)
Attitude	Real quaternions
Stations	dpod2020_023.snx (modified for iono-free Z comp) ITRF2020-doris.psd
Parameters	Dynamic: 1 CDs, 1 CR, manoeuvre errors, 30 CPRs (along/cross sin/cos) Observation: 1 bias per station per pass, 1 ZTD+TMF per station per pass
Edit criteria	10º min elev 300 s min pass length

DORIS processing with FocusPOD

POD results Future work

- Revisit satellite parametrization
- Improvement of LEO receiver clock bias:
 - Smoothing of "F" observable / receiver clock bias in epoch record from RINEX
 - Rcv clock bias estimation based on pseudo-ranges from reference stations
 - Rcv clock derived from GNSS measurements (WG in progress)
- Improvement of data screening (elevation weighting, revisit observation sigmas...)
- Improvement of troposphere modelling: GPT, VMF, estimated gradients
- Test impact of Seasonal Geocenter Motion (ITRF20)
- Replace "constant bias per station per pass" by estimates of station frequency bias and drift ?

Any recommendation from the IDS is more than welcome! ③

DORIS processing with FocusPOD

Conclusions

- FocusPOD is capable of processing DORIS (RINEX), but still "work in progress"
- LEO POD based on DORIS for Sentinel-3 and -6 show radial agreement ~ 1 cm
- Roadmap to keep improving the SW towards state-of-the-art processing!

Thank you

Copernicus POD Service

Carlos Fernández (GMV)

Marc Fernández (GMV) Jaime Fernández (GMV) Heike Peter (POSITIM) Pierre Féménias (ESA/ESRIN) Carolina Nogueira-Loddo (EUMETSAT)

© 2024 GMV Property – All rights reserved

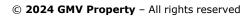
Category	Functionality
Time and frames	Handle transformation between multiple time scales (TAI, UTC, UT1, GNSS) and reference frames (ITRF, GCRF, TEME, etc.)
Measurements	Simulation and reconstruction. GNSS, SLR, DORIS, XYZ, Range, Doppler, Angles.
Orbit propagation	Numerical propagation (Adams-Bashforth, Runge-Kutta) with state-of-the-art orbit perturbations Keplerian, SGP4
Clocks	Simulation and estimation of clock biases.
Attitude	Quaternion-based; Simulation & SLERP interpolation.
Events	Orbital (eclipse, ascending node crossing) Station (elevation, field of view)

FOCUSPOD Capabilities (II)

Category	Functionality
Parameter estimation method	Batch least square Extended Kalman Filter (EKF) Parameters: dynamic (SV, CD, RP, empirical), observation (clocks, ambiguities, biases, tropo), coords, manoeuvres.
Optimization	Consider parameters (aerodynamic/SRP error, biases)
GNSS	Integer Ambiguity Resolution
SST	Initial Orbit Determination. Association (track-to-track, track-to-orbit, orbit-to-orbit). Manoeuvre detection, object size estimation, etc.
Quality control	Orbit, clock and attitude comparisons. GNSS sensor performance. Ground-track and tube control.

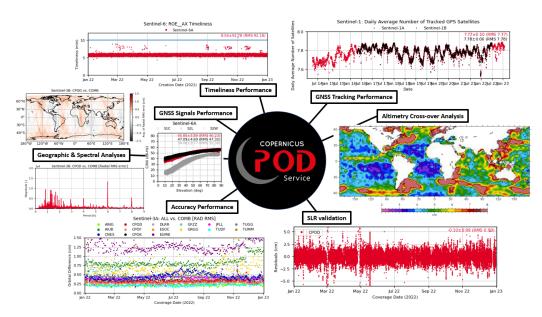
FOCUSPOD Geophysical models (I)

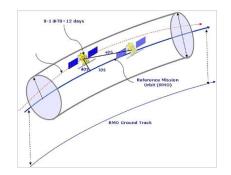
Category	Models	
Frames	IERS 96 and 2010 conventions Linear mean pole Local frame converter (topocentric, QSW, TNW)	
Gravity	COST-G, EIGEN, EGM (w/ support to time-varying terms) Ocean tides (OTIERS): FES2014 Solid tides (STIERS): IERS 2010 Atmospheric gravity (AOD1B) Seasonal geocenter motion: ITRF20	
Third-body	JPL ephem. DE405, DE421	
Density	MSISE00	
Space weather	RSGA, Celestrak	
Biases	Absolute and Differential signal biases	


DORIS processing with FocusPOD

FOCUSPOD Geophysical models (II)

Category	Models
Radiation	Solar Radiation Pressure (SRP), albedo, infra-red, antenna power thrust
Empiricals	Constant-Per-Revolution (CPR) ECOM, ECOM-2
Ionosphere	Iono-free, Nequick
Troposphere	Mendes-Pavlis, Niell, Saastamoinen
Satellite	Fixed area, macro-model Theoretical or real attitude laws Impulsive and long manoeuvres
Station	North-East-Up or ad-hoc pointing Post-Seismic Deformations ITRF20 seasonal geocenter motion





FOCUSPOD Applications in geodesy

- CPOD Service: LEO POD based on GNSS + SLR validation
- Galileo 2nd Generation System Test Bed & Integrity algorithms for Space Corridor: GNSS measurement simulation

GNSS

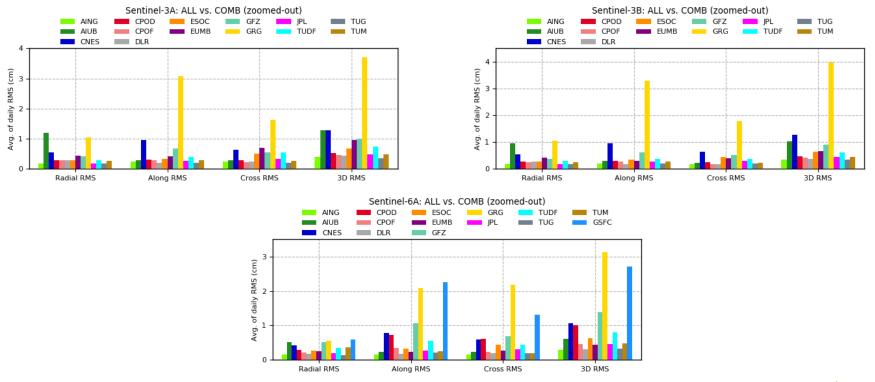
- Multi-GNSS constellation (GPS, GAL, GLONASS, BeiDou, QZSS...) orbits & clocks computation
- Signal bias calibration

SLR

Geodetic satellite processing (LAGEOS, LARES...)

DORIS

- LEO POD accuracy improvement: troposphere, long term frequency bias estimation...
- LEO POD of more satellites: JASON-3, HY-2CD...


• VLBI

First implementation starting

CPOD Orbital Accuracy CPOD RSR#30 2023 results

DORIS processing with FocusPOD

Page 29

