

Impact of the South-Atlantic Anomaly radiations on DORIS Ultra-Stable Oscillator: resulting effects on DORIS measurements and orbit determination for Sentinel-3A and Sentinel-6A

T. Gravalon¹, A. Couhert^{2,3}, J. Moyard², F. Mercier^{2,3}

1 CELAD for Collecte Localisation Satellites (CLS), Ramonville Saint-Agne, France 2 Centre National d'Etudes Spatiales (CNES), Toulouse, France 3 GET- Université de Toulouse (CNES, CNRS, IRD, UPS), Toulouse, France

Introduction

- All DORIS on-board operations are derived from a clock reference at 10Mhz set by an USO (Ultra Stable oscillator)
- USO behaviour may be affected by irradiation rates
- Modelled as a 3rd order polynomial through the DORIS processing

Problematic

This doesn't take into account the USO rapid variations

Introduction

-40

-60

-80

-150

-100

-50

0 Longitude 50

100

150

Poor DORIS RMS for the stations in the vicinity of the SAA

Introduction

How to mitigate this issue ?

Model the response of the USO to SAA irradiation rates

Lemoine, J. M., & Capdeville, H. (2006). A corrective model for Jason-1 DORIS Doppler data in relation to the South Atlantic Anomaly. Journal of Geodesy, 80, 507-523.

Lemoine, J. M., & Biancale, R. (2004). A model of DORIS frequency correction for JASON in relation to the SAA. In 35th COSPAR Scientific Assembly (Vol. 35, p. 2898).

Capdeville, H., Štěpánek, P., Hecker, L., & Lemoine, J. M. (2016). Update of the corrective model for Jason-1 DORIS data in relation to the South Atlantic Anomaly and a corrective model for SPOT-5. Advances in Space Research, 58(12), 2628-2650.

 Determine the USO behaviour from GNSS processing The "GNSS clock" will be used to describe the high frequency USO behaviour especially through the SAA

Jalabert, E., & Mercier, F. (2018). Analysis of South Atlantic Anomaly perturbations on Sentinel-3A ultra stable oscillator. Impact on DORIS phase measurement and DORIS station positioning. *Advances in Space Research*, *62*(1), 174-190.

Štěpánek, P., Duan, B., Filler, V., & Hugentobler, U. (2020). Inclusion of GPS clock estimates for satellites Sentinel-3A/3B in DORIS geodetic solutions. *Journal of Geodesy*, *94*(12), 116.

 Estimation of a frequency drift on DORIS residuals Current POE-G solution for every Jason and Sentinel-6A

Sentinel Satellites on-board architecture

The USO drives both DORIS and GPS instrument frequency

The GNSS Clock

Sentinel-3A example

- Issued from CNES reduced dynamic orbit determination following POE-G standard (including receiver relativistic corrections)
- 30 seconds sampling in GPS time

GPS Clock [m]

Raw GPS clock are delivered in the context of the corresponding IDS WG

The GNSS Clock

Clock Analysis

- DORIS pass length about 10 min
- In minutes linear regression ~ frequency bias estimation in DORIS processing

The DORIS residuals will rise when the linear regression does not fit the clock properly

Sentinel-3A

 Highest impact on the clock at the beginning and ending of the drift

- The SAA signature is clearly visible for Sentinel-3A
- Different coverage for ascending/descending tracks

Sentinel-3B

ascending and descending tracks

(a smaller region is impacted)

Sentinel-6A

Signature of the SAA less visible than for S3A

 $\sim 5 \text{ cm}$ RMS for S6A $\sim 20 \text{ cm}$ RMS for S3A

Less visible than S3A

- Different USO response
- Greater area of effect of the SAA (higher satellite)

Integration of DORIS orbits

Integration of DORIS orbits: S3A

Longitude

Integration of DORIS orbits: S3B

Sentinel-3B: Without any correction / With GPS clock integration - From 20/05/2022 to 16/11/2022 - 180 days

All tracks - 2° Grid

RMS of the DORIS dynamic orbits with a reference orbit (DORIS + GPS reduced dynamic)

[cm]	RMS Radial	RMS Normal	RMS Tang.
w/o clock	0.748	2.077	2.169
w/ clock	0.736	1.588	2.113

Integration of DORIS orbits: S6A

All tracks - 2° Grid

RMS of the DORIS dynamic orbits with a reference orbit (DORIS + GPS reduced dynamic)

[cm]	RMS Radial	RMS Normal	RMS Tang.	
w/o clock	0.553	2.675	2.210	
w/ clock	0.512	2.480	2.138	

Integration of DORIS orbits: S6A

Sentinel-6A: With DORIS frequency drift estimation (current POE-F solution for S6A) / With GPS clock integration From 26/05/2022 to 02/11/2022 - 160 days

Conclusion

 The SAA effects on DORIS USO is satellite dependant (stronger for S3A than S3B and S6A) from oscillator observations

- The configuration of the Sentinel satellites (the USO driving both the GPS and DORIS instrument) can be used to determine USO high frequency variations
- The integration of the Sentinel GPS clocks allows to mitigate DORIS phase residuals for stations located in the SAA area (resulting SAA stations phase residuals are similar to non-SAA stations)
- Slightly better orbits with the clock integration even when comparing with orbits with DORIS frequency drifts corrections

Integration of GNSS Clock : SLR validation

Decomposition of the clock signal: 10 minutes sliding windows (S3A example)

Frequency bias / a1

Frequency drift / a2

Degree 2/a3

