Three Decades of Altimetry Orbits: Consistent DORIS-Based Orbit Series and Validation

Patrick Schreiner, Anton Reinhold, Tilo Schöne, Saskia Esselborn, Rolf König

IDS – Workshop 2024 Montpellier – September 5, 2024

Content

- 1. Introduction
- 2. Processing Strategy
- 3. Internal Orbit Validation
- 4. External Orbit Validation
- 5. Altimetry Validation
- 6. Conclusion and Outlook

1 Introduction

Motivation:

 DORIS-based orbits generated at the GFZ IDS AAC showed geographic patterns in comparison to reduced dynamic GPS-based orbits

What was done:

- 1. Investigation on the cause of the geographic patterns
- 2. Test of new processing set up

Aim:

 Generate an improved consistently processed DORIS-based time series for altimetry satellites

- CryoSat-2
- ENVISAT
- Jason-1
- Jason-2
- Jason-3
- SARAL
- Sentinel-3A
- Sentinel-3B
- Sentinel-6A (MF)
- TOPEX/Poseidon

Time Span:

• 1993-2023

3

IDS-Workshop Montpellier – September 5, 2024

HELMHOLTZ

2 Processing Strategy

- Regional geographic patterns were discovered in DORIS-based orbits in comparison to internally processed reduced dynamic GPS-based orbits
 - DORIS and GPS processing is fully consistent in terms of background models etc.
 - But: Different dynamic parameterization
- > Optimize the processing for DORIS-based orbits to reduce geographic patterns

2.1 Influence of Gravity Field (1)

- Analytical Earth gravity field sensitivity analysis
- Highest sensitivity in degree 2, 3 and 4
- Correlations between odd zonal coefficients

HELMHOLTZ

5

2.1 Influence of Gravity Field (2)

• Co-estimating the SH coefficients shows the highest improvement in low-degrees (deg. 3)

HELMHOLTZ

6

2.1 Influence of Gravity Field (3)

- Co-estimating low-degrees helps to reduce geographic patterns in the orbit
- Adapted gravity field needed
 - Static part of GOCO-06s + new time variable information from EIGEN-GRGS-RL04 and COST-G

HELMHOLTZ

3 Internal Orbit Validation (1)

Internal Orbit Validation

- Optimized processing used for all satellites
- Analysis of DORIS and SLR residuals
- Analysis of estimated parameters

- Global mean DORIS RMS is approximately 0.4 mm/s and below
- Jason-1 and Jason-2 perform better

IDS-Workshop Montpellier – September 5, 2024

3 Internal Orbit Validation (2)

SLR is used down-weighted for validation

- Global RMS for most of the missions close to 1 cm
- **TOPEX/Poseidon** shows slightly larger RMS
- CryoSat-2 and Jason-3 show slightly increased values

IDS-Workshop Montpellier – September 5, 2024

3 Internal Orbit Validation (3)

estimated empirical parameters

IDS-Workshop Montpellier – September 5, 2024

HELMHOLTZ

4 External Orbit Validation (1)

Orbit comparison against CNES POE-F

	Radial		
Mission	Mean (cm)	RMS (cm)	
TOPEX	-0.12	1.32	
ENVISAT	-0.04	0.64	
CryoSat-2	0.05	0.92	
SARAL	-0.01	0.68	
Jason-1	0.04	1.20	
Jason-2	0.16	0.79	
Jason-3	0.09	0.98	
Sentinel-3A	-0.02	0.74	
Sentinel-3B	-0.02	0.79	
Sentinel-6A (MF)	0.21	0.77	

11

IDS-Workshop Montpellier – September 5, 2024

HELMHOLTZ

4 External Orbit Validation (2)

HELMHOLTZ

12

- TOPEX/Poseidon shows larger deviations in cross-track and along-track direction
- Jason-1 and Jason-3 show higher deviations than Jason-2

4 External Orbit Validation (3)

IDS-Workshop Montpellier – September 5, 2024

HELMHOLTZ

5 Altimetry Validation

Detailed altimetry analysis as an example for Sentinel-3A

- Comparable performance for mean crossover differences and time bias between orbit and altimetry time system for all solutions
- Often slightly reduced counts for GFZ and CPOD-QWG. This is due to orbital manoeuvres

POTSDAM

Mean of crossover differences

5.1 Sea Level Anomalies (1)

RMS CPOD-QWG

 Initial reference is the CPOD-QWG combined orbit solution

IDS-Workshop Montpellier – September 5, 2024

HELMHOLTZ

5.1 Sea Level Anomalies (2)

- POE-F and `GFZ new' solution show superior performance in 2017-2018
- CPOD-QWG performs slightly better since 2019/2020

	Global RMS [cm]		
CPOD-QWG	5.30		
POE-F	5.33		
GFZ new	5.34		
GFZ old	5.36		

Global mean RMS differences (60°S to 60°N)

16

IDS-Workshop Montpellier – September 5, 2024

HELMHOLTZ

5.1 Sea Level Anomalies (3)

- Red indicates lower RMS compared to CPOD-QWG blue indicates higher RMS
- 'GFZ new' shows a more homogeneous pattern, regions with peak higher RMS could be improved
 - Indian and Eastern Pacific Ocean
- Compared to POE-F, 'GFZ new' shows slightly better performance in the Indian and South Atlantic Ocean, POE-F performs best in the East Pacific

RMS CPOD-QWG minus RMS GFZ old

RMS CPOD-QWG minus RMS GFZ new

HELMHOLTZ

5.1 Sea Level Anomalies (4)

- 'GFZ new' shows significant reduction of regional signals
- POE-F shows stronger signal in Indian Ocean

IDS-Workshop Montpellier – September 5, 2024

5.2 SLA Trend Analysis (1)

Trend CPOD-QWG (02/2017-09/2023)

- Analysis of altimetry trends using the example of Sentinel-3A
- The reference trend is again computed based on the combined CPOD-QWG solution

IDS-Workshop Montpellier – September 5, 2024

HELMHOLTZ

5.2 SLA Trend Analysis (2)

• Trend differences against the CPOD-QWG combined orbit solution

Mean sea level trends (6.5 years) for different regions in [mm/yr]					
	GMSL	S Ocean	N Ocean	Trop. Ocean	
CPOD-QWG	3.7 ± 0.1	2.8 ± 0.2	4.2 ± 0.2	4.1 ± 0.2	
POE-F	4.0 ± 0.1	3.1 ± 0.2	4.7 ± 0.3	4.4 ± 0.2	
GFZ new	4.0 ± 0.1	2.9 ± 0.2	5.0 ± 0.3	4.3 ± 0.2	
GFZ old	4.0 ± 0.1	3.2 ± 0.2	4.5 ± 0.2	4.3 ± 0.2	

6 Conclusion and Outlook

- Notable reduction in regional geographic patterns in the orbit
- Internal and external orbit validations confirm improved accuracy
- 'GFZ new' DORIS-only orbits achieve radial RMS values below 1 cm across all missions, in comparison to POE-F
- Global SLA RMS for Sentinel-3A now close to POE-F
- Fewer residual geographic signal differences
- Certain geographic patterns persist in the SLA trend analysis
 - > Motivation for continued improvements

