

The cooperative Global Ionospheric Map (GIM) using DORIS-dSTEC-based weight

Ang Liu¹*; Ningbo Wang¹*; Zishen Li¹

cnes

1 Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100094, China

*E-mail: liuang@aircas.ac.cn; wangningbo@aoe.ac.cn

Background and Motivation

cnes

· e e sa

IGS Ionosphere Associated Analysis Centers (IAACs)

- International GNSS Service (IGS) provide freely and openly available GNSS data and products
- IGS Ionosphere Working Group's major task consists of the routine provision of IGS GIMs based on a combination of ionosphere maps.

• IGS Combined GIM has become the most widely used ionospheric TEC map.

Background and Motivation

cnes

· e e sa

IGS Method: Combined GIM based on GNSS EdSTEC

- Current Version
- GNSS-based
- Not all GIMs are used (four GIMs used)
- Code is outdated (Fortran, decades ago)
- Comprehensive method is not completely independent (GNSS EdSTEC)

- Improvement
- DORS-based

1111 8

- Introduced all IAAC GIMs (Seven)
- New Code Version (C/C++ and Python)
- New Comprehensive method is proposed (DORIS dSTEC)

Our motivation was to create a more reliable and accurate combined GIM by integrating these diverse data sources, particularly incorporating **DORIS** observations to enhance the final product.

Method

· e esa

cnes

New Method: Combined GIM based on DORIS dSTEC

Dual-frequency carrier phase measurements form the geometry-free linear combination.

$$dSTEC_{DORIS}(t) = 40.3 \times \left(f_{1}^{-2} - f_{2}^{-2}\right) \times \left[L_{I}(t) - L_{I}(t_{Emax}) - \left(\Delta D(t) - \Delta D(t_{Emax})\right) + \left(\Delta D(t) - \Delta D(t_{Emax})\right)\right]$$
$$EdSTEC_{GNSS}(t) = 40.3 \times \left(f_{1}^{-2} - f_{2}^{-2}\right) \times \left[L_{I}(t) - L_{I}(t_{Emax})\right]$$
$$dSTEC_{GNSS}(t) = 40.3 \times \left(f_{1}^{-2} - f_{2}^{-2}\right) \times \left[L_{I}(t) - L_{I}(t_{Emax})\right]$$

Theoretical precision

 DORIS-dSTEC
 0.028 TECu (σ_{L1} =1.5 mm and σ_{L2} =7.5 mm)

 GNSS-dSTEC
 0.250 TECu (σ_{L1} = σ_{L2} =2.0 mm)

 GNSS-EdSTEC
 0.250 TECu (σ_{L1} = σ_{L2} =2.0 mm)

Method

· e e sa

cnes

New Method: Combined GIM based on DORIS dSTEC

The result confirms that DORIS dSTEC assessment can be used as an independent way to validate the quality of those ground GPS/GNSS generated ionospheric models.

- 48 co-located stations
- DOY 001-110, 2022
- Rapid GIM validation

Correlation coefficient (CC) = 0.81

Method

eesa

cnes

New Method: Combined GIM based on DORIS dSTEC

Residual extraction

$$\delta_{GIM}(j) = dSTEC_{\text{GIM}-\text{SH}}(\varphi_j, \lambda_j) - dSTEC_{\text{ref}}(\varphi_j, \lambda_j)$$

90 Original weights 60° $W_0 = \left[\frac{\sum(\cos(lat) \cdot \delta_{GIM}(j)^2)}{\sum\cos(lat)}\right]^{-1}$ 30° Latitude Normalized weights $\boldsymbol{w}_i = \boldsymbol{W}_0^i / \sum_{k=1}^n \boldsymbol{W}_0^k$ -30° -60° Magnetic Latitude Combined GIM Geographic Latitude $VTEC(\beta, \lambda, t) = \sum_{m} \mathbf{w}_{m} * \mathbf{VTEC}_{GIM}^{m}(\beta, \lambda, t)$ Longitude 12 latitude zones

Method

· e esa

cnes

AIR

New Method: Combined GIM based on DORIS dSTEC

1111 8 1111

Method

· e esa

cnes

New Method: Combined GIM based on DORIS dSTEC

AIR

DORIS Beacons

https://ids-doris.org/doris-system/tracking-network/site-logs.html

Products ID	Weighting scheme	PROS	CONS		
[A] CAS1	GNSS EdSTEC	• Reduce the impact of mapping errors.	Data samples are limited.Correlation with model input		
[B] CAS2	DORIS dSTEC	 More independent reference sources Observation coverage of marine areas. 	Significant delaysReal-time data has a delay of 2-3 hours.		
[C] CAS3	GNSS dSTEC	Reduce the impact of mapping errors.	Correlation with model input		

GIM combination and validation

AIR

cnes

· eesa

CAS and IGS combined Rapid GIM

GIM combination and validation

AIR

cnes

(eesa

Normalized weights in two methods

1111 8

GIM combination and validation

Normalized weights in three methods

ID	2020			2021			2022		
	GNSS dSTEC	GNSS EdSTEC	DORIS dSTEC	GNSS dSTEC	GNSS EdSTEC	DORIS dSTEC	GNSS dSTEC	GNSS EdSTEC	DORIS dSTEC
CARG	0.143	0.139	0.153	0.156	0.149	0.152	0.153	0.148	0.145
CORG	0.155	0.154	0.154	0.172	0.167	0.147	0.171	0.172	0.140
EHRG	0.131	0.132	0.147	0.141	0.137	0.141	0.131	0.129	0.127
ESRG	0.112	0.112	0.144	0.113	0.109	0.137	0.099	0.095	0.117
JPRG	0.146	0.168	0.120	0.141	0.168	0.132	0.156	0.173	0.148
WHRG	0.144	0.145	0.133	0.152	0.155	0.138	0.163	0.167	0.138
UPRG	0.166	0.150	0.148	0.124	0.115	0.150	0.126	0.114	0.184

GIM combination and validation

cnes

AIR

· eesa

Accuracy w.r.t JASON-3 VTEC

Year			GIMs RMS [TECU]		
	CORG	IGRG	CAS1	CAS2	CAS3
2021	4.799	5.130	4.638	4.531	4.571
2022	6.776	6.857	6.405	6.305	6.353

Conclusions and future work

cnes ·eesa

The concept of DORIS dSTEC assessment is proposed, which is the extension of the existing GNSS dSTEC validation method. DORIS dSTEC assessment can be used as an independent way to validate the quality of those ground GPS/GNSS generated ionospheric models. (CC = 0.82)

1111 8

- ► IGS-CAS generated three types Combined GIM, i.e., CAS1, CAS2 and CAS3 (w.r.t JASON VTEC)
 - □ CAS1 (GNSS EdSTEC): RMS = 6.405 TECU
 - □ CAS2 (DORIS dSTEC): RMS = 6.305 TECU
 - □ CAS3 (GNSS dSTEC) : RMS = 6.353 TECU
 - □ IGRG (GNSS EdSTEC): RMS = 6.857 TECU
- ► More validation in positioning domain for the combined global ionospheric TEC,
- As more DORIS near-real-time data becomes available, the timeliness of this comprehensive product will be significantly improved.

Some Reference.

Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., García-Rigo, A., & Orús-Pérez, R. (2017). Methodology and consistency of slant and vertical assessments for ionospheric electron content models. Journal of Geodesy, 91(12), 1405-1414. doi:10.1007/s00190-017-1032-z

1111 6

- Liu, A., Wang, N., Dettmering, D., Li, Z., Schmidt, M., Wang, L., & Yuan, H. (2023). Using DORIS data for validating real-time GNSS ionosphere maps. Advances in Space Research, 72(1), 115-128. doi:10.1016/j.asr.2023.01.050
- Liu, Q., Hernández-Pajares, M., Yang, H., Monte-Moreno, E., Roma-Dollase, D., García-Rigo, A., . . . Ghoddousi-Fard, R. (2021). The cooperative IGS RT-GIMs: a reliable estimation of the global ionospheric electron content distribution in real time. Earth System Science Data, 13(9), 4567-4582. doi:10.5194/essd-13-4567-2021

Thanks for your attention

In case of any questions, please feel free to contact

Ningbo WANG: <u>wangningbo@aoe.ac.cn</u> Ang Liu: liuang@aircas.ac.cn

· eesa

cnes