

EFFECT OF THE SECOND ORDER IONOSPHERIC DELAY ON PRECISE ORBIT DETERMINATION OF DORIS SATELLITES AND ON THE CNES/CLS IDS ANALYSIS CENTER SOLUTION

Mezerette A, Capdeville H, Lemoine JM

- Overview & implementation
- Impact on precise orbit determination
- Impact on station's position solution

2nd Order Ionospheric correction overview

- Ionosphere : upper layer of the atmosphere (60-800km), ionized by solar radiation
- Signal delayed through ionosphere by the charged particles
- First order ionospheric delay: +10 meters
- First order is removed by using iono-free combination
- Second order remained

2nd Order Ionospheric correction overview

 $\Delta I^{(2)} = f(\omega, B, STEC)$

- W : frequency (DORIS: 400MHz and 2000MHz)
- B : magnetic field
- STEC: Slant Total Electron Content = amount of free electron on the path of the signal

2nd Order Ionospheric correction overview

2nd Order Ionospheric correction : station latitude dependency

Affect majoritary stations near tropics

COLLECTE LOCALISATION SATELLITE

Implementation in our processing software GINS

- Overview & implementation
- Impact on precise orbit determination

Impact on station's position solution

S3A : orbit comparison , XYZ terrestrial frame

Orbit differences (without versus with 2nd order ionosperic correction) in XYZ terrestrial frame

- Sub-millimetric offset in Z component
- Correlated with the solar activity

orbit comparison for all satellites on Z component

			2		1
Satellite	Altitude (km)		E63		
S6A	1336	Zof	$ \underline{\exists} \\ \underline{\exists} \\ \underline{\exists} \\ 1.5 \end{bmatrix} \begin{bmatrix} soa \\ s3a \\ s3b \end{bmatrix} $		
JA3	1336	fset	i = 1.5 $-i = ja3$ $-i = srl$		
HY2D	971	incre	$\begin{bmatrix} 0 \\ N \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$		
HY2C	957	ease	$\begin{bmatrix} 5 \\ 5 \\ 5 \end{bmatrix} = \begin{bmatrix} - & h2d \end{bmatrix}$		
S3A&S3B	814		ifferer	AND A REPORT AND A	
SRL	800		- d	MANN MANNAMANA	MM
CS2	717	•		AN	MAX
					W
			2021 202	2 2023	

S3A : orbit comparison , Radial-Tangential-Normal frame

Orbit differences (without versus with 2nd order ionosperic correction) in RTN frame

No impact on the radial component, goor for altimetry purpose

- Overview & implementation
- Impact on precise orbit determination
- Impact on station's position solution

S3A: station position solution comparison

S3A altitude: 814km

13

S6A: station position solution comparison

S6A altitude: 1336km

MULTISAT: station position solution comparison S6A, JA3, S3A, S3B, SRL, CS2, HY2C, HY2D

CLS Clette Localisation safellifes

Conclusion

- 2nd order ionospheric effect depends on:
 - Latitude (stations close to the equator are more impacted)
 - only affects the Z component.
- It impacts precise orbit determination :
 - 1mm Z offset for low altitude satellites (S3A, CS2 ...)
 - < 0,5mm Z offset for higher altitude satellites (S6A, Jason3)
 - No impact on radial component for all satellites
- It impacts on station's position solution :
 - 2 mm Z translation for low altitude mono-satellite solution (S3A, CS2 ...)
 - Almost no effect for higher altitude mono-satellite solution (S6A, Jaons3)
 - 1 mm Z translation for multi-satellite solution

